Experimental Study and Adsorption Modeling of COD Reduction by Activated Carbon for Wastewater Treatment of Oil Refinery
نویسنده
چکیده
Application of Granular Activated Carbon (GAC) in adsorption process has been studied for the advanced treatment of municipal and industrial wastewater. Because of entering poisonous compounds such as furfural, phenol and sulfides into the oily wastewater of Tehran refinery, biological aeration basins of wastewater treatment unit may not have the desired performance of COD reduction. In this study, GAC is examined for reduction of COD effluent from the Dissolved Air Flotation (DAF) unit to achieve to the environmental and design regulations. The equilibrium batch experiments as well as dynamic adsorption tests were performed to determine the maximum adsorption capacity and the breakthrough curves of COD, respectively. The data derived from equilibrium studies were modeled using Langmuir theory and the isotherm parameters were determined at two different temperatures of 25 and 40 C. Dynamic adsorption modeling was carried out considering the axial dispersion model in the bed of GAC with the assumption of lump kinetic mass transfer and linear driving force into the solid phase. The model results of COD breakthrough curve concentration have shown a fairly good agreement with experimental results. The sensitivity analysis of the dynamic model was carried out at different temperatures, bed lengths, feed flow rate and feed concentration to have a proper insight for appropriate design of a GAC fixed bed. It is concluded that GAC fixed bed could be an auxiliary unit for biological treatment of wastewater to overcome the problems of biological basin in oil refineries.
منابع مشابه
Experimental Study and Adsorption Modeling of COD Reduction by Activated Carbon for Wastewater Treatment of Oil Refinery
Application of Granular Activated Carbon (GAC) in adsorption process has been studied for the advanced treatment of municipal and industrial wastewater. Because of entering poisonous compounds such as furfural, phenol and sulfides into the oily wastewater of Tehran refinery, biological aeration basins of wastewater treatment unit may not have the desired performance of COD reductio...
متن کاملExperimental Comparison of Two Modifications of Activated Sludge for Treatment of Furfural-Containing Wastewater
A case study is presented in which two modifications of activated sludge treatment of complex chemical wastewater are experimentally compared: a combination of common activated sludge with powdered activated carbon treatment (PACT), and bioaugmentation of activated sludge treatment (BAST). Industrial wastewater of Pars Oil Refinery that was passed through an oil recovery stage was used to inve...
متن کاملModeling and Experimental Prediction of Wastewater Treatment Efficiency in Oil Refineries Using Activated Sludge Process
In this study, activated sludge process for wastewater treatment in a refinery was investigated. For such purpose, a laboratory scale rig was built. The effect of several parameters such as temperature, residence time, effect of Leca (filling-in percentage of the reactor by Leca) and UV radiation on COD removal efficiency were experimentally examined. Maximum COD removal efficiency was obtained...
متن کاملModeling and optimization of oil refinery wastewater chemical oxygen demand removal in dissolved air flotation system by response surface methodology
In this present study the dissolved air flotation (DAF) system was investigated for the treatment of Kermanshah Oil Refinery wastewater. The effect of three parameters on flotation efficiency including of flow rate (outflow from the flotation tank), saturation pressure and coagulant dosage on chemical oxygen demand (COD) removal was examined experimentally. All the experiments were done under a...
متن کاملOil Refinery Wastewater Treatment by Advanced Oxidation Processes for Chemical Oxygen Demand Removal using the Box-Behnken Method
This study investigated the reduction of the chemical oxygen demand from the Kermanshah oil refinery wastewater using Fenton and Photo-Fenton processes. The study investigated the effects of operating variables such as ultraviolet light intensity in values of 0, 15, and 30 W, ferrous ion concentration in values of 10, 50, and 90 mg/l, hydrogen peroxide concentration in values of 100, 500 and, 9...
متن کامل